${\Delta _1}:{a_1}x + {b_1}y + {c_1} = 0$ có VTPT \(\overrightarrow {{n_1}} = \left( {{a_1};{b_1}} \right)\);

${\Delta _2}:{a_2}x + {b_2}y + {c_2} = 0$ có VTPT \(\overrightarrow {{n_2}} = \left( {{a_2};{b_2}} \right)\).

Gọi \(\alpha \) là góc tạo bởi giữa hai đường thẳng ${\Delta _1}$ và ${\Delta _2}$.

Khi đó




Bạn đang xem: Toán 10 khoảng cách và góc

$\cos \alpha = \left| {\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)} \right| = \dfrac{{\left| {\overrightarrow {{n_1}.} \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \dfrac{{\left| {{a_1}.{a_2} + {b_1}.{b_2}} \right|}}{{\sqrt {a_1^2 + b_1^2} .\sqrt {a_2^2 + b_2^2} }}$


2. Khoảng cách từ một điểm đến một đường thẳng

Khoảng cách từ ${M_0}\left( {{x_0};{y_0}} \right)$ đến đường thẳng $\Delta :ax + by + c = 0$ được tính theo công thức


$d\left( {{M_0},\Delta } \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}$


Nhận xét. Cho hai đường thẳng ${\Delta _1}:{a_1}x + {b_1}y + {c_1} = 0$ và ${\Delta _2}:{a_2}x + {b_2}y + {c_2} = 0$ cắt nhau thì phương trình hai đường phân giác của góc tạo bởi hai đường thẳng trên là:


$\dfrac{{{a_1}x + {b_1}y + {c_1}}}{{\sqrt {a_1^2 + b_1^2} }} = \pm \dfrac{{{a_2}x + {b_2}y + {c_2}}}{{\sqrt {a_2^2 + b_2^2} }}$


*
Bình luận
*
Chia sẻ
>> (Hot) Đã có SGK lớp 10 kết nối tri thức, chân trời sáng tạo, cánh diều năm học mới 2022-2023. Xem ngay!
Bài tiếp theo
*

*
*
*
*
*
*
*
*

*
*



Xem thêm: " Màu Đen Trong Tiếng Anh Là Gì ? Hoàn Toàn Màu Đen Tiếng Anh Là Gì

Vấn đề em gặp phải là gì ?

Sai chính tả Giải khó hiểu Giải sai Lỗi khác Hãy viết chi tiết giúp nasaconstellation.com


Cảm ơn bạn đã sử dụng nasaconstellation.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?