Số phức là gì? Số thực có thể được hình dung là những giá trị trong không gian 1 chiều, còn số phức chính là những giá trị nằm trong không gian 2 chiều gồm: trục thực và trục ảo.

Bạn đang xem: Số ảo

*


Số phức

Định nghĩa số phức

Số phức có dạng \(a + bi\)

a, b là các số thựci là đơn vị ảo

Với \(i^2 = -1\)

Nếu ta lấy phần thực của số phức thì đó là a. Nếu ta lấy phần ảo của số phức thì đó là b.

Ví dụ số phức:

2 + 3i –> phần thực: 2, phần ảo: 34 - 2i-5 + i-6 - 4i1.2 + 5.1i4.4 = 4.4 + 0i –> trong trường hợp này, hệ số b của đơn vị ảo bằng 0

Vậy ta có thể thấy rằng số phức là trường hợp tổng quát hơn của số thực. Số thực là 1 trường hợp cụ thể của số phức (khi b = 0). Để dễ hình dung nhất về số phức. Ta tiến hành so sánh và minh họa cụ thể chúng trong không gian 2 chiều trong phần tiếp theo.

Điểm khác giữa số phức và số thực

Tự nhiên thêm đơn vị ảo i vào làm chi không biết (=__=), làm ta rất khó hình dung nếu chỉ nhìn cách biểu diễn con số phức và các công thức tính toán của nó. Nào ta hãy cùng biểu diễn / visualize con số phức đó lên không gian 2 chiều (mặt phẳng) cho dễ tưởng tượng nhé!

*

Như hình minh họa trên, trục x (trục hoành) biểu diễn cho phần thực, còn trục y (trục tung) biểu diễn cho phần ảo. Những con số thực mà ta tính toán trước kia sẽ giống như \(r_3\), \(r_5\) được biểu diễn như trên hình trong không gian phức.

\<(z_6)^2 = (0 - 2i)^2 = (-2i)^2 = 4i^2 = 4(-1) = -4 = r_5\>

Dạng lượng giác của số phức

\(z = r(cos \varphi + isin \varphi) = rcos \varphi + r*i*sin \varphi\)

với r là 1 số thực, \(\varphi\) là góc.

Xem thêm: Phân Tử Adn Liên Kết Với Protein Mà Chủ Yếu Là Histon Đã Tạo Nên Cấu Trúc Đặc Hiệu Gọi Là

So sánh với định nghĩa, ta thấy rằng:

Phần thực: \(a = rcos \varphi\)Phần ảo: \(b = rsin \varphi\)

Điểm đặc biệt là số phức ở dạng lượng giác được biểu diễn theo độ dài vector (r)góc của vector (\(\varphi\)).

Xem Z là điểm có tọa độ \((rcos \varphi, rsin \varphi)\).Thật vậy: \(| \overrightarrow{OZ} | = \sqrt{(rcos \varphi)^2 + (rsin \varphi)^2} = \sqrt{(r^2((cos \varphi)^2 + (sin \varphi)^2)} = \sqrt{(r^2(1)} = r\)

Góc tạo bởi OZ và Ox là:

\<\arctan (\frac{Z_y}{Z_x}) = \arctan (\frac{rsin \varphi}{rcos \varphi}) = \arctan (tan \varphi) = \varphi\>

Với ví dụ hình minh họa ở mục trên, số phức \(z_1 = 2 + 2i\) sẽ được biểu diễn ở dạng lượng giác là: \(r = \sqrt{2^2 + 2^2} = 2\sqrt{2}\)