Những hằng đẳng thức xứng đáng nhớ chắc thân quen gì với chúng ta . Hôm nay Kiến đang nói kỹ hơn về 7 hằng đẳng thức đặc biệt quan trọng : bình phương của một tổng, bình phương của một hiệu, hiệu của hai bình phương, lập phương của một tổng, lập phương của một hiệu, tổng hai lập phương và sau cùng là hiệu hai lập phương. Chúng ta cùng tìm hiểu thêm nhé.
Bạn đang xem: Hàng đẳng thức đáng nhớ
A. 7 hằng đẳng thức đáng nhớ
1. Bình phương của một tổng
Với A, B là các biểu thức tùy ý, ta có: ( A + B )2= A2+ 2AB + B2.
Ví dụ:
a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.Hướng dẫn:
a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32= a2+ 6a + 9.b) Ta bao gồm x2+ 4x + 4 = x2+ 2.x.2 + 22= ( x + 2 )2.
2. Bình phương của một hiệu
Với A, B là các biểu thức tùy ý, ta có: ( A - B )2= A2- 2AB + B2.
3. Hiệu nhị bình phương
Với A, B là các biểu thức tùy ý, ta có: A2- B2= ( A - B )( A + B ).
4. Lập phương của một tổng
Với A, B là các biểu thức tùy ý, ta có: ( A + B )3= A3+ 3A2B + 3AB2+ B3.
5. Lập phương của một hiệu.
Với A, B là những biểu thức tùy ý, ta có: ( A - B )3= A3- 3A2B + 3AB2- B3.
Ví dụ :
a) Tính ( 2x - 1 )3.b) Viết biểu thức x3- 3x2y + 3xy2- y3dưới dạng lập phương của một hiệu.Hướng dẫn:
a) Ta có: ( 2x - 1 )3= ( 2x )3- 3.( 2x )2.1 + 3( 2x ).12- 13
= 8x3- 12x2+ 6x - 1
b) Ta bao gồm : x3- 3x2y + 3xy2- y3= ( x )3- 3.x2.y + 3.x. Y2- y3
= ( x - y )3
6. Tổng nhị lập phương
Với A, B là những biểu thức tùy ý, ta có: A3+ B3= ( A + B )( A2- AB + B2).
Chú ý: Ta quy cầu A2- AB + B2là bình phương thiếu hụt của hiệu A - B.
Ví dụ:
a) Tính 33+ 43.b) Viết biểu thức ( x + 1 )( x2- x + 1 ) dưới dạng tổng nhị lập phương.Hướng dẫn:
a) Ta có: 33+ 43= ( 3 + 4 )( 32- 3.4 + 42) = 7.13 = 91.b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13= x3+ 1.
7. Hiệu nhị lập phương
Với A, B là những biểu thức tùy ý, ta có: A3- B3= ( A - B )( A2+ AB + B2).
Chú ý: Ta quy mong A2+ AB + B2là bình phương thiếu của tổng A + B.
Ví dụ:
a) Tính 63- 43.b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) bên dưới dạng hiệu nhì lập phươngHướng dẫn:
a) Ta có: 63- 43= ( 6 - 4 )( 62+ 6.4 + 42) = 2.76 = 152.b) Ta gồm : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3- ( 2y )3= x3- 8y3.B. Bài bác tập trường đoản cú luyện về hằng đẳng thức
Bài 1.Tìm x biết
a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.Hướng dẫn:
a) Áp dụng các hằng đẳng thức ( a - b )( a2+ ab + b2) = a3- b3.( a - b )( a + b ) = a2- b2.
Khi đó ta có ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
⇔ x3- 33+ x( 22- x2) = 0 ⇔ x3- 27 + x( 4 - x2) = 0
⇔ x3- x3+ 4x - 27 = 0
⇔ 4x - 27 = 0
Vậy x=

Xem thêm: Cách Tính Dt Hình Tam Giác : Đều, Cân, Vuông, Thường Từ A, Công Thức Tính Diện Tích Tam Giác
b) Áp dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2- b3
( a + b )3= a3+ 3a2b + 3ab2+ b3
( a - b )2= a2- 2ab + b2
Khi đó ta có: ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.
⇔ ( x3+ 3x2+ 3x + 1 ) - ( x3- 3x2+ 3x - 1 ) - 6( x2- 2x + 1 ) = - 10
⇔ 6x2+ 2 - 6x2+ 12x - 6 = - 10
⇔ 12x = - 6
Vậy x=

Bài 2:Rút gọn gàng biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2
2x2+ 4xy B. – 8y2+ 4xy- 8y2 D. – 6y2+ 2xyHướng dẫn
Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2
A = x2– (2y)2–
A = x2– 4y2– x2+ 4xy - 4y22
A = -8y2+ 4xy
Hãy lưu giữ nó nhé
Những hằng đẳng thức đáng nhớ trên rất quan trọng đặc biệt tủ kiến thức của họ . Thế nên các bạn hãy nghiên cứu và ghi nhớ nó nhé. Hầu hết đẳng thức đó giúp bọn họ xử lý các bài toán dễ dàng và khó khăn một biện pháp dễ dàng, các bạn nên làm đi làm việc lại để bạn dạng thân có thể vận dụng giỏi hơn. Chúc chúng ta thành công và chịu khó trên tuyến đường học tập. Hẹn các bạn ở những bài bác tiếp theo