Phương trình chứa căn – Bất phương trình chứa căn

Các dạng phương trình cất căn bậc hai, bất phương trình đựng căn thức bậc hai vẫn là một dạng toán xuất hiện nhiều trong những kì thi học kì, thi tuyển chọn sinh vào lớp 10, thi THPTQG.

Bạn đang xem: Căn a nhỏ hơn b

Để giải được phương trình, bất phương trình đựng căn, những em học viên cần nắm vững kiến thức sau:

1. Phép tắc chung nhằm giải phương trình, bất phương trình chứa căn bậc 2

Nguyên tắc chung để khử lốt căn thức là bình phương 2 vế của một phương trình, bất phương trình. Mặc dù nhiên, để bảo đảm việc bình phương này cho họ một phương trình, bất phương trình mới tương đương thì cần được có đk cả 2 vế pt, bpt phần đa không âm.


Do đó, về phiên bản chất, chúng ta lần lượt chất vấn 2 trường vừa lòng âm, cùng không âm của những biểu thức (thường là một trong vế của phương trình, bất phương trình đang cho).



2. Các dạng phương trình cất căn, bất phương trình chứa căn nguyên bản

Có khoảng chừng 4 dạng phương trình chứa căn, bất phương trình đựng căn cơ phiên bản đó là


*

3. Cách giải phương trình chứa căn, giải pháp giải bất phương trình đựng căn

Chi tiết về cách thức giải những dạng phương trình, bất phương trình đựng căn, xin mời thầy cô và những em học viên theo dõi trong đoạn phim sau đây.


4. Một số ví dụ về phương trình với bất phương trình cất căn thức

Ví dụ 1. Giải phương trình


$$sqrt 4 + 2x – x^2 = x – 2$$


Hướng dẫn. Phương trình vẫn cho tương đương với


<eginarrayl,,,,,,,left{ eginarraylx – 2 ge 0\4 + 2x – x^2 = (x – 2)^2endarray ight.\Leftrightarrow left{ eginarraylx ge 2\x^2 – 3x = 0endarray ight.\Leftrightarrow left{ eginarraylx ge 2\x = 0, vee ,x = 3endarray ight. \ Leftrightarrow x = 3endarray> Vậy phương trình đã cho bao gồm nghiệm độc nhất vô nhị $x = 3$.

Ví dụ 2. Giải phương trình

Hướng dẫn. Phương trình đang cho tương tự với


<eginarrayl,,,,,,,left{ eginarraylx – 1 ge 0\25 – x^2 = (x – 1)^2endarray ight.\Leftrightarrow left{ eginarraylx ge 1\2x^2 – 2x – 24 = 0endarray ight.\Leftrightarrow left{ eginarraylx ge 1\x = 4, vee ,x = – 3endarray ight. \ Leftrightarrow x = 4endarray> Vậy phương trình có nghiệm nhất $x=4$.


Ví dụ 3. Giải phương trình


Hướng dẫn. Phương trình vẫn cho tương tự với


<eginarrayl,,,,,,,,sqrt 3x^2 – 9x + 1 = x – 2\, Leftrightarrow left{ eginarraylx – 2 ge 0\3x^2 – 9x + 1 = (x – 2)^2endarray ight.\Leftrightarrow left{ eginarraylx ge 2\2x^2 – 5x – 3 = 0endarray ight.\Leftrightarrow left{ eginarraylx ge 2\x = 3 vee ,x = – frac12endarray ight. \ Leftrightarrow x = 3endarray> Vậy phương trình đang cho có nghiệm độc nhất $x = 3$.


Ví dụ 4. Giải phương trình $$sqrt x^2 – 3x + 2 = x – 1$$


Hướng dẫn. Phương trình đã cho tương tự với $$eginarrayl,,,,,,,left{ eginarraylx – 1 ge 0\x^2 – 3x + 2 = left( x – 1 ight)^2endarray ight.\Leftrightarrow left{ eginarraylx ge 1\x = 1endarray ight. \ Leftrightarrow x = 1endarray$$ Vậy phương trình đã cho có nghiệm độc nhất vô nhị $x = 1$.


Ví dụ 5. Giải phương trình $$sqrt x^2 – 5x + 4 = sqrt – 2x^2 – 3x + 12 $$


Hướng dẫn. Phương trình vẫn cho tương đương với $$eginarrayl,,,,,,,left{ eginarraylx^2 – 5x + 4 ge 0\x^2 – 5x + 4 = – 2x^2 – 3x + 12endarray ight.\Leftrightarrow left{ eginarraylleft( x – 1 ight)left( x – 4 ight) ge 0\3x^2 – 2x – 8 = 0endarray ight. Và \Leftrightarrow left{ eginarraylleft< eginarraylx le 1\x ge 4endarray ight.\left< eginarraylx = 2\x = frac – 86endarray ight.endarray ight. Leftrightarrow x = frac – 86endarray$$ Vậy phương trình vẫn cho tất cả nghiệm nhất $x = frac-86$.


Ví dụ 6. Giải bất phương trình $$x + 1 ge sqrt 2left( x^2 – 1 ight) $$

Hướng dẫn. Bất phương trình đang cho tương tự với $$eginarrayl,,,,,,,left{ eginarraylx + 1 ge 0\left( x + 1 ight)^2 ge 2left( x^2 – 1 ight) ge 0endarray ight.\Leftrightarrow left{ eginarraylx ge – 1\x^2 – 2x – 3 le 0\x^2 – 1 ge 0endarray ight.\Leftrightarrow left{ eginarraylx ge – 1\– 1 le x le 3\left< eginarraylx le – 1\x ge 1endarray ight.endarray ight. Leftrightarrow left< eginarraylx = – 1\1 le x le 3endarray ight.endarray$$

Vậy tập nghiệm của bất phương trình là $S = left< 1;3 ight> cup left – 1 ight$.

Ví dụ 7. Giải bất phương trình $$2x – 5 left{ eginarrayl2x – 5 – x^2 + 4x – 3 ge 0endarray ight. & left( 1 ight)\left{ eginarrayl2x – 5 ge 0\left( 2x – 5 ight)^2 endarray ight. & left( 2 ight)endarray ight.$$

Hệ bất phương trình (1) tương tự với $$left{ eginarraylx 1 le x le 3endarray ight. Leftrightarrow 1 le x Hệ bất phương trình (2) tương đương với $$eginarrayl,,,,,,,left{ eginarraylx ge frac52\5x^2 – 24x + 28 endarray ight.\Leftrightarrow left{ eginarraylx ge frac52\2 endarray ight. Leftrightarrow frac52 le x endarray$$

Lấy vừa lòng tập nghiệm của 2 trường hợp trên, được đáp số ở đầu cuối là $S = left< 1;frac145 ight)$.

Ví dụ 8. Giải phương trình $$sqrt x + 4 – sqrt 1 – x = sqrt 1 – 2x $$

Hướng dẫn. Phương trình đã cho tương đương với

$$eginarrayl,,,,,,,sqrt x + 4 = sqrt 1 – 2x + sqrt 1 – x \Leftrightarrow left{ eginarrayl– 4 le x le frac12\x + 4 = 1 – x + 2sqrt (1 – x)(1 – 2x) + 1 – 2xendarray ight.\Leftrightarrow left{ eginarrayl– 4 le x le frac12\sqrt (1 – x)(1 – 2x) = 2x + 1endarray ight.\Leftrightarrow left{ eginarrayl– 4 le x le frac12\x ge – frac12\(1 – x)(1 – 2x) = 4x^2 + 4x + 1endarray ight.\Leftrightarrow left{ eginarrayl– frac12 le x le frac12\x = 0 vee x = – frac72endarray ight. Leftrightarrow x = 0endarray$$ Vậy phương trình sẽ cho bao gồm nghiệm tốt nhất $x = 0$.

Ví dụ 9. Giải phương trình $$sqrt 3x + 1 – sqrt 2x – 1 = sqrt 6 – x $$

Hướng dẫn. Điều kiện $left{ eginalign và 3x+1ge 0 \ & 2x-1ge 0 \ & 6-xge 0 \ endalign ight.Leftrightarrow left{ frac12le xle 6 ight.$

Với đk đó, phương trình đang cho tương đương với $$eginarrayl,,,,,,,sqrt 3x + 1 – sqrt 2x – 1 = sqrt 6 – x \Leftrightarrow ,,,sqrt 3x + 1 = sqrt 6 – x + sqrt 2x – 1 \Leftrightarrow ,,,3x + 1 = 6 – x + 2x – 1 + 2sqrt 6 – x sqrt 2x – 1 \Leftrightarrow ,,,2x – 4 = 2sqrt 6 – x sqrt 2x – 1 \Leftrightarrow ,,x – 2 = sqrt 6 – x sqrt 2x – 1 \Leftrightarrow ,,x^2 – 4x + 4 = – 2x^2 + 13x – 6,,,(x ge 2)\Leftrightarrow ,,3x^2 – 17x + 10 = 0\Leftrightarrow left< eginarraylx = 5\x = frac23left( l ight)endarray ight.endarray.$$ Vậy phương trình vẫn cho có nghiệm $x=5$.

Ví dụ 10.

Xem thêm: Cách Đăng Nhập Nhiều Tài Khoản Gmail Cùng Một Lúc, Hướng Dẫn Đăng Nhập Gmail Trên Máy Tính

Giải bất phương trình $$2sqrtx-3-frac12sqrt9-2xge frac32$$

Hướng dẫn. Điều khiếu nại $left{ eginalign và x-3ge 0 \ và 9-2xle 0 \ endalign ight.Leftrightarrow 3le xle frac92$

Với đk trên, bất phương trình sẽ cho tương đương với <eginarrayl,,,,,,,2sqrt x – 3 ge frac12sqrt 9 – 2x + frac32\Leftrightarrow 4left( x – 3 ight) ge frac14left( 9 – 2x ight) + frac94 + frac32sqrt 9 – 2x \Leftrightarrow 16x – 48 ge 18 – 2x + 6sqrt 9 – 2x \Leftrightarrow 9x – 33 ge 3sqrt 9 – 2x \Leftrightarrow left{ eginarrayl18x – 64 ge 0\left( 9x – 33 ight)^2 ge 9left( 9 – 2x ight)endarray ight.\Leftrightarrow left{ eginarraylx ge frac329\81x^2 – 576x + 1008 ge 0endarray ight.\Leftrightarrow left{ eginarraylx ge frac329\left< eginarraylx le frac289\x ge 4endarray ight.endarray ight. Leftrightarrow x ge 4endarray>

Kết hợp với điều khiếu nại ta gồm tập nghiệm của bất phương trình là $S=left< 4;,frac92 ight>$.

Xem những ví dụ không giống nữa trên đây: Phương pháp thay đổi tương đương giải phương trình đựng căn