Lớp 1

Lớp 2

Lớp 2 - Kết nối tri thức

Lớp 2 - Chân trời sáng tạo

Lớp 2 - Cánh diều

Tài liệu tham khảo

Lớp 3

Sách giáo khoa

Tài liệu tham khảo

Sách VNEN

Lớp 4

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Lớp 6

Lớp 6 - Kết nối tri thức

Lớp 6 - Chân trời sáng tạo

Lớp 6 - Cánh diều

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 7

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 10

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

IT

Ngữ pháp Tiếng Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu


*

Lý thuyết, các dạng bài tập Toán 8Toán 8 Tập 1I. Lý thuyết & trắc nghiệm theo bàiII. Các dạng bài tậpI. Lý thuyết & trắc nghiệm theo bàiII. Các dạng bài tậpToán 8 Tập 1I. Lý thuyết & trắc nghiệm theo bài họcII. Các dạng bài tập
Chứng minh hai tam giác vuông đồng dạng hay, chi tiết - Toán lớp 8
Trang trước
Trang sau

Chứng minh hai tam giác vuông đồng dạng hay, chi tiết

Với Chứng minh hai tam giác vuông đồng dạng hay, chi tiết môn Toán lớp 8 phần Hình học sẽ giúp học sinh ôn tập, củng cố kiến thức từ đó biết cách làm các dạng bài tập Toán lớp 8 Chương 3: Tam giác đồng dạng để đạt điểm cao trong các bài thi môn Toán 8.

Bạn đang xem: Cách chứng minh đồng dạng

Dạng bài: Chứng minh hai tam giác vuông đồng dạng

A. Phương pháp giải

Hai tam giác vuông đồng dạng với nhau nếu:

Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia.

Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia.

Định lí: Nếu cạnh huyền và cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác kia thì hai tam giác vuông đó đồng dạng.

Như vậy, nếu hai tam giác vuông ΔABC và ΔA1B1C1 thỏa mãn:

*

*

Và khi đó ta có : 

*

Định lí: Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng.

*
Như vậy, nếu
*
 với tỉ số k thì

*

*

Định lí: Tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.

Như vậy, nếu

*
với tỉ số k thì
*
.

*
B. Ví dụ minh họa

Câu 1: Cho ΔABC vuông tại A, AC = 8cm, BC = 12cm. Kẻ tia Cx vuông góc với BC. Trên Cx lấy điểm D sao cho BD =18cm. Chứng minh rằng

*
.

Lời giải:

Xét hai tam giác vuông ΔABC và ΔBCD, ta có:

*

Câu 2: Cho tam giác ABC, phân giác AD. Gọi E và F lần lượt là hình chiếu của B và C lên AD. Chứng minh rằng: AE.DF=AF.DE

Lời giải:

*

Xét hai tam giác vuông ABE và ACF có:

*

Xét hai tam giác vuông BDE và CDF có:

*

Câu 3: Cho tam giác nhọn ABC có đường cao CK. Dựng ra phía ngoài tam giác ABC hai tam giác ACE và CBF tương ứng vuông góc tại E; F và thỏa mãn

*
. Chứng minh rằng:
*
.

Lời giải:

*

Xét ΔACK và ΔBCF có:

*

C. Bài tập tự luyện

Câu 1: Cho tam giác ABC vuông ở A, đường cao AH. Chứng minh rằng:

*

Câu 2: Cho hai tam giác vuông ABC và ABD có đỉnh góc C và D nằm trên một nửa mặt phẳng bờ AB. Gọi P là giao điểm của các cạnh AC và BD. Đường thẳng qua P vuông góc với AB tại I. Chứng minh rằng:

*

Câu 3: Cho tam giác ABC nhọn có BD và CE là hai đường cao cắt nhau tại H. Gọi M là giao điểm của AH và BC. Chứng minh rằng:

MH.MA=MB.MC

Câu 4: Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh rằng H là giao điểm các đường phân giác trong tam giác DEF.

b) Gọi K là giao điểm của AD và EF. Chứng minh rằng: HK.AD=AK.DH

Câu 5: Kẻ đường cao BD và CE của tam giác ABC và các đường cao DF và EG của tam giác ADE.

a) Chứng minh AD. AE = AB. AG = AC. AF

b) Chứng minh FG//BC.

Câu 6: Cho tam giác ABC vuông tại A. Điểm D trên cạnh AC. Đường thẳng qua D vuông góc với BC tại E cắt AB tại F. Chứng minh rằng:

a) DAF ∽ DEC

b) ABC ∽ EDC.

Xem thêm: Ý Thức Là Hình Ảnh Chủ Quan Của Thế Giới Khách Quan, Ý Thức (Triết Học Marx

Câu 7: Giả sử AC là đường chéo lớn của hình bình hành ABCD. Từ điểm C hạ các đường vuông góc CE và CF tương ứng trên đường kéo dài của các cạnh AB và AC. Chứng minh rằng AB.AE + AD.AF = AC2.

Giới thiệu kênh Youtube nasaconstellation.com


CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, nasaconstellation.com HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 8 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!